
NOTATION 

v is the particle velocity; u mean particle velocity; u , velocity of the medium; T, 
time of dynamic particle relaxation; n, particle concentration; s characteristic dimen- 
sion. Indices: w denotes the parameter at the wall. 
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EFFECTS OF VISCOUS DISSIPATION AND JOULE HEAT ON HEAT 

TRANSFER NEAR A ROTATING DISK IN THE PRESENCE OF INTENSIVE 

SUCTION 

V. D. Borisevich and E. P. Potanin UDC 532.52.526.75:536.24.01 

Heat transfer in the bounday layer of an electrically conducting incompressi- 
ble liquid near a disk rotating in an axial magnetic field is investigated 
for the case of intensive, uniform suction. The thermal flux intensity near 
the disk surface is determined in relation to the magnetic field strength 
and the rotation speed of the disk with an allowance for the viscous and the 
Joule dissipation. 

The characteristics of the hydrodynamic and the thermal boundary layers at a rotating 
unbounded permeable disk were calculated in [i, 2] by integrating the equations of motion 
and energy with averaged convective terms while neglecting the viscous dissipation. Heat 
transfer near a disk rotating in a conducting medium within an axial magnetic field was 
considered in the absence of suction [3] and in the case of strong suction [4], using a 
similar nondissipativeapproximation. We have considered the effect of viscous dissipation 
and of the Joule heat on heat transfer in the magnetohydrodynamic boundary layer at a per- 
meable dielectric disk rotating in an electrically conducting incompressible, viscous medi- 
um. Let us assume that the difference between the temperature in the main flow and the disk 
temperature is relatively small [2]. We assume in accordance with [i, 2] that w = w0 - k. 
Then, if condition k >> w 0 is satisfied, we have the following for the thermal boundary 
layer at the disk: 
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Fig. i. Distribution of the liquid temperature 0 along 
the boundary layer thickness Yl for different values of 
the parameters of the problem (all quantities are in 
dimensionless form), a) No: i) 0.i; 2) 0.3; 3) 0.5; 
4) 0.7; 5) 0.9; b) Pr: i) 0.i; 2) 0.3; 3) 0.5; 4) 0.7; 
c) s: I) o; 2) 0.5; 3) 2; 4) 4. 
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The second and the third terms on the right-hand side of Eq. (i) describe the specif- 
ic viscous and Joule dissipated power values, respectively. Using the data from [4] for 
the flow velocity v, we find after integrating (i) 

where 

T = T O -~- (T~ -- To) [I -- exp (--qo Pr y)] q- T~ Pr N O ([~2 + 1) • 
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The subscript 0 refers to the parameters of the medium near the disk surface, while sub- 
script i refers to quantities infinitely remote from the disk. 

For the case of a nonconducting medium (S = 0), we obtain [5] 

T ~ 1 7 6  [ e x p ( - - P r k o y 0  - - e x p ( - - 2 k o y l ) ] ,  T = T o + (T~ - -  To) [ 1 - -  exp ( - -  Pr  kog~)] + 2 (2 - -  Pr) 

for Pr ~ 2, 

for Pr = 2. 

T = T O ,q- (T~ - -  To) [ i - -  exp (--  2~0Yl)] -~ ToNokoy~ exp (--  2koy~) 

Here, Yl = z(m/v) I/2. 

(4) 

(5) 
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Fig. 2. Dimensionless thermal flux in- 
tensity in the boundary layer at the 
disk Nu as a function of the dimension- 
less magnetohydrodynamic interaction 
parameter S for different values of No: 
i) 0.i; 2) 0.5; 3) i. 

Let us investigate the temperature distribution in the boundary layer for different 
values of the parameters in the range of Pr, No, and S [3-5]. 

Figure la shows the profiles of the dimensionless temperature O = (T - T0)/(TI - To) 
in the case S = 0 for k0 = 2; n = TI/T 0 = i.I; Pr = i and different values of the parameter 
No. For small values of No, the relative contribution of viscous heat release is small, 
and the temperature profile has the form associated with nondissipative flow. For N o > 0.3, 
viscous dissipation begins to play the role of an additional heat source, which causes an 
increase in the temperature variation rate in the bounday layer. The O profile then assumes 
a shape whose maximum is larger than unity near the disk surface. 

Figure ib and c shows the O distributions for the same values of k 0 and n, N o = i, and 
different values of the Pr (S = 0.5) and S (Pr = i) numbers, respectively. The character 
of variation of the 8 profile in relation to the Prandtl numbers (Fig. ib) is connected 
with the relative lessening of the role of thermal conductivity as Pr increases. The in- 
crease in the maximum value of O with an increase in the magnetohydrodynamic interaction 
parameter S (Fig. Ic) is explained by an intensification of Joule heating of the medium due 
to the passage of the radial electric current. 

The heat-transfer process in the boundary layer is most clearly illustrated by the mag- 
nitude of the thermal flux at the boundary between the liquid and the body in the flow. Ac- 
cording to [6], we introduce the integral Nusselt number, 

R 
2 ~ q(O) rdr 

Nu = J~ I # v '  (6)  
(To--  TO R z [ /  ~ ' 

OT I is the thermal flux intensity at the disk surface. where q(0)=--• 0z z=0 

Using (2), we obtain 

Nu = k o P r +  P r N o ( R ) ] / S  (~z+ 1) 
4 ( n - - 1 ) ~  (7)  

Figure 2 shows the Nu number as a function of the parameter S for n = i.i, Pr = i, and 
N o = 0.i; 0.5; i. Analyzing (7), we readily satisfy ourselves that, with an increase in No, 
the dimensionless thermal flux rises considerably due to the intensification of viscous dis- 
sipation in the boundary layer. For instance, in the case of a nonconducting medium, the 
Nusselt number increases by a factor of 3 as N o increases from 0.i to i. Variation of the 
S parameter, which characterizes the action of electromagnetic forces, involves changes in 
the relationship between the contributions of the viscous and the Joule dissipation to the 
heat release process. For small values of S, viscous heating of the gas plays the main 
role, and the increase in the Nu number with the rise of S is related to the increase in the 
velocity gradients with a reduction in the thickness of the hydrodynamic boundary layer. For 
large S values, the basic effect is produced by the Joule heating of the liquid, the effi- 
ciency of which is proportional to the square of the radial current density jr 2. Our calcu- 
lations have shown that Joule heating begins to play an important role at high rotation 
velocities of the disk. 

1222 



NOTATION 

v and w, radial and axial velocity components of the medium, respectively; r and z, 
radial and axial coordinates, respectively; k, suction intensity at the disk surface; p, 
density; D and 9, dynamic and kinematic viscosity coefficients of the medium, respectively; 
Cp, specific heat; K, thermal conductivity; c, conductivity; B, magnetic induction; T, tem- 
perature; ~, angular velocity of the disk; R, disk radius. 
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DYNAMICS OF MACROMOLECULES IN CONVERGENT-CHANNEL FLOWS 

Z. P. Shul'man, E. A. Zal'tsgendler, and B. M. Khusid UDC 532.135 

The deformation of flexible and rigid macromolecules is analyzed under condi- 
tions of convergent-channel flows. 

Certain pieces of equipment employed in chemical technology as well as in biotechnology 
make use of a dispersion medium to compress the stream of a macromolecular solution. For 
this case it is necessary to evaluate the effect of the shape of the convergent nozzle, 
the rate of flow, and the characteristics of the macromolecules on the deformation which 
takes place during the flow in the convergent channel and after passage through the channel 
(Fig. I). The simplest of macromolecules have been used for these calculations, i.e., in 
the shape of flexible dumbbells and rigid axisymmetric ellipsoids. The deformation of the 
macromolecular flow near the axis of the convergent channel is close to elongational (the 
radius of the stream of the solution is considerably smaller than the radius of the conver- 
gent channel). 

Flexible Macromolecules. The behavior of flexible macromolecules in various hydro- 
dynamic situations has been analyzed in a number of papers, among which we will cite [1-6]. 
Flexible macromolecules are modeled by dumbbells with identical "spheres" and a nonlinear 
elastic link between them. If we neglect the inertial forces, then, as a consequence of 
the low macromolecular mass, it is possible to have 

~ + P-f + PB+ P~o = 0. (1) 

The e l a s t i c  f o r c e  F1 = -3Nk0 ~ ( r ' / R ) ~ I / R  2. For  t h e  n o n l i n e a r  f u n c t i o n  ~ ( r ' / R )  we t a k e  t h e  
Warner a p p r o x i m a t i o n  ~ ( r ' / R )  = [1 - ( r ' / R ) 2 ]  -1 With such  an a p p r o x i m a t i o n  t h e  e l a s t i c  
force sharply increases in proportion to the straightening of the circuit and tends toward 
infinity as r' § R, which is in accord with physical sense (for any conformation of the cir- 
cuit, the length of the "head-to-tail" vector of the macromolecule cannot be greater than 
the length of the totally straightened circuit). The force of hydrodynamic friction which 
arises as a consequence of the relative motion of the solution and the spheres of the "dumb- 
bell" is given by Ff = $(r'/R)(? - ~'). The parameter of external friction, a function of 
the conformation of the circuit, is taken [5, 6] to be equal to $ = $0Q(r'/R) = $0 N~r'/R; 
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